Latest Posts

The World’s Road Networks, Visualized As Beautiful Flowing Fractals – Co.Exist


Co.Exist

The World’s Road Networks, Visualized As Beautiful Flowing Fractals
Co.Exist
“If cities are living things, roads are the veins that keep them alive, even at the mathematical level.” Portrait image for Alberto Hernando. ESPD. from Alberto Hernando. 00:00. 00:08. 00:08. Like. Add to Watch Later. Share. Clip ID:181461915. Delivery

Continue reading »

Population Density and Urban/Rural Split of the UK

A new map on CDRC Maps showing perhaps one of the simplest demographic metrics – residential population density – how many people live in each hectare across the UK. The data is available at the smallest statistical area available (output areas in GB and small areas in NI) and I have combined this with the … Continue reading Population Density and Urban/Rural Split of the UK

Continue reading »

Three reasons a Yorkshire devolution deal probably isn’t going to happen – CityMetric


CityMetric

Three reasons a Yorkshire devolution deal probably isn’t going to happen
CityMetric
It reminds me of this piece of work, by James Cheshire and Oliver O’Brien – two researchers at UCL’s Centre for Advanced Spatial Analysis – which plots life expectancy by tube station. The shading shows reflects deprivation in individual areas:.

and more »

Continue reading »

Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour

One of the facts about academic funding and outputs (that is, academic publications), is that there isn’t a simple relationship between the amount of funding and the number, size, or quality of outputs. One of the things that I have noticed over the years is that a fairly limited amount (about £4000-£10,000) are disproportionately effective. … Continue reading Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour

Continue reading »

This map of London’s tube shows disused stations, track layout and more – CityMetric


CityMetric

This map of London’s tube shows disused stations, track layout and more
CityMetric
It reminds me of this piece of work, by James Cheshire and Oliver O’Brien – two researchers at UCL’s Centre for Advanced Spatial Analysis – which plots life expectancy by tube station. The shading shows reflects deprivation in individual areas:.

and more »

Continue reading »

O/D Map of London Commuting

This map shows the cross-borough London commuting flows in a different way to the conventional approach of drawing lines between the start and end of each commute (as shown here. It’s a large map of London boroughs, which each borough itself containing a small map of London. The intensity of the colour in each of […]

Continue reading »

Published: Why is Participation Inequality Important?

I’ve mentioned the European Handbook for Crowdsourced Geographic Information in the last post, and explained how it came about. My contribution to the book is a chapter titled ‘Why is Participation Inequality Important?‘. The issue of participation inequality, also known as the 90:9:1 rule, or skewed contribution, has captured my interest for a while now. … Continue reading Published: Why is Participation Inequality Important?

Continue reading »

New book: European Handbook of Crowdsourced Geographic Information

COST ENERGIC is a network of researchers across Europe (and beyond) that are interested in research crowdsourced geographic information, also known as Volunteered Geographic Information (VGI). The acronym stands for ‘Co-Operation in Science & Technology’ (COST) through ‘European Network Researching Geographic Information Crowdsourcing’ (ENREGIC). I have written about this programme before, through events such as twitter … Continue reading New book: European Handbook of Crowdsourced Geographic Information

Continue reading »

Will Brexit end London’s reign as financial capital of Europe? Probably not – CityMetric


CityMetric

Will Brexit end London’s reign as financial capital of Europe? Probably not
CityMetric
Following the Brexit vote, the race to succeed London as Europe’s financial capital is on. “We know that groups based in the City are planning to leave for Dublin, Amsterdam, Frankfurt and Paris,” the French prime minister, Manuel Valls, told

and more »

Continue reading »

Datashine: Mapping the UK Population

All the DataShine websites (except DataShine Election) are derived from a common codebase and use the OpenLayers 3 mapping platform to display a full-window slippy map, with user controls and key overlaid. DataShine Census DataShine ScotlandCommissioned by the National Records of Scotland. DataShine Commute DataShine Scotland Commute. Commissioned by the National Records of Scotland. DataShine Region […]

Continue reading »

Mildly depressing housing chart of the week: summer doldrums – CityMetric


CityMetric

Mildly depressing housing chart of the week: summer doldrums
CityMetric
It reminds me of this piece of work, by James Cheshire and Oliver O’Brien – two researchers at UCL’s Centre for Advanced Spatial Analysis – which plots life expectancy by tube station. The shading shows reflects deprivation in individual areas:.
Petition · Save London’s nightlife. Stop the closure of fabric. · Change.orgChange.org
Islington borough council’s decision – UK.COMUK.COM
Was this the real reason Fabric was shut down? ‘Operation Lenor’ and a cash-strapped council and policeThe Independent

all 251 news articles »

Continue reading »

Book Review: Rethinking Global Land Use in an Urban Era

https://mitpress.mit.edu/books/rethinking-global-land-use-urban-era
Recently I  reviewed a great book entitled “Rethinking Global Land Use in an Urban Era” edited  by Karen Seto and Anette Reenberg (2014) for the Journal of Regional Science. Readers can read my review below.
The beginning of the 21st Century marked a milestone in human history. For the first time, more than half of the world’s population lived in urban areas (3.9 billion). This trend is expected to continue in the foreseeable future with 6.3 billion people living in cities by 2050 (United Nations, 2014). This growth will cause more urban land to be developed during the first 30 years of the 21st century than in all of human history (Angel et al., 2011). Combine this unprecedented urban expansion with global population growth, which is expected to grow from today’s 7.3 to 11.2 billion by 2100 (United Nations, 2015), and we are faced with unprecedented challenges and questions to be asked with respect to land-use in the 21st century. For example, how much living space will be needed to accommodate this growing population or how much land will be needed to feed such a population? Or how does urban growth in one country impact agricultural production and deforestation in the other parts of the world? To answer these questions, we need to understand the complexity of land competition from social, economic, and environmental perspectives at the local, national, and international levels and the connections between them.

In their edited book, Rethinking Global Land Use in an Urban Era, Karen Seto and Anette Reenberg bring together 17 chapters from 50 experts from a variety of fields to explore global land dynamics in the 21st century. The first chapter acts as an introduction and scene-setting to the following chapters: it identifies current trends reshaping land-use locally and globally such as urbanization and the growing integration of economies and markets (e.g. telecoupling, see Seto et al., 2012), but also argues that there is a need to rethink land change science in a time when more and more people are living in cities. Specifically, they argue one should look at land-use through four lenses (which are the major sections in the book): land-use competition; distal land connections; decision making, governance, and institutions; and, finally, urbanization and land-use.

The first section of the book focuses on land-use competition, specifically what types of land-use competition exist (such as forest vs. agricultural or urban vs. agriculture), and discusses how local land-use change is increasingly being caused by global factors (chapter 2). Chapter 3 addresses food security with respect to the growing population and discusses the need for intensification of production. Chapter 4 discusses the issue of finite land resources and competition for land—such as production vs. production (e.g. food vs. fuel) or production vs. conservation (e.g. food production vs. conservation). What is interesting about this chapter is that the competition for land is not just local but also global, due to the growing number of sovereign wealth funds and multi-national corporations and the increasing degree of interconnections between places. The section concludes with chapter 5, which offers an in-depth discussion of land-use competition between food production and urban expansion in China, specifically the effects of urbanization on the loss of cultivated land for food production.

Source: Seto, K.C. and Reenberg, A. (eds.) (2014), Rethinking Global Land Use in an Urban Era, MIT Press, Cambridge, MA.
The second section of the book explores distal land connections. It opens with a chapter that reviews the globalization of economic flows and the impact of these forces on land-use transitions (i.e. land-use and land-cover change). Chapter 7 introduces applications based on the telecoupling framework to land-change science. It makes a compelling argument considering not just coupled human-environmental systems (where the focus is on local conditions) but also causes that emanate from distant locations to truly understand land-change. This theme continues in chapter 8, which outlines analytical approaches to study telecoupling, while chapter 9 uses palm oil as a case study of distal land connections. In essence, the consumers of palm oil live far from the source; thus many consumers do not immediately feel the impacts of palm oil production on land-use change.

In the third section of the book, the focus is on decision-making, governance, and institutions. Chapter 10 discusses the emergence of global land governance as a result of land grabbing by foreign investors or governments (see GRAIN, 2008), which is prompting states and global civil society to devise new global land governance instruments, while chapter 11 explores large-scale land (grabbing) transactions with a specific emphasis on the actors and their interactions. Chapter 12 focuses on private market-based regulations (such as the Forest Stewardship Council) and what they mean for land-use governance at the local and international level. The final chapter in this section focuses on changes in land-use governance in an urban era. It discusses how governance mechanisms that manage land-use are changing from territorial organizations to global industries that are tied to specific resource flows between urban and rural areas.

The final section of the book turns to urbanization and land-use. Chapter 14 reviews major contemporary urban patterns and processes related to urbanization, such as central place theory, and shows how advances in technology and infrastructure challenge such established theories. The next chapter discusses how urban land-use is unique in terms of form, size, and shape of cities and asks what will the future hold? Will cities be sprawling or compact? An interesting fact brought up in chapter 15 is that currently less than five percent of the earth’s surface is urban and with the urban population predicted to grow to 5 billion by 2030, the urban footprint will still be less than 10 percent (Seto et al., 2011). The final chapter in this section proposes a framework that moves away from looking at land as discrete categories but instead as a continuum with respect to sustainable development. The book concludes with a chapter written by the editors, which not only provides a summary of what was presented, but reemphasizes the interconnected nature of land-use and the need to study future global land change and urbanization from a multidisciplinary perspective.

Overall this is a timely, relevant, and thought-provoking collection of papers which not only explores urbanization and food production using case studies from around the world as well as the connections between cities and distant places, but also lays the foundation for new ways of thinking about land-use sustainability in the coming decades. In my opinion, this book would be a great resource for scholars interested in current state of the art of land-use science and a good textbook for any course exploring land-use and land-cover change in the 21st century.

References:

  • Angel, Shlomo, Jason Parent, Daniel L. Civco, Alexander Blei, and David Potere. 2011. “The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050,” Progress in Planning, 75(2): 53-107.
  • GRAIN. 2008.Seized: The 2008 Landgrab for Food and Financial Security,” Available at http://bit.ly/28Nc7xK [Accessed on September, 7th, 2015].
  • Seto, Karen C., Michail Fragkias, Burak Güneralp, and Michael K. Reilly. 2011. “A Meta-analysis of Global Urban Land Expansion,” PloS One, 6(8): e23777.
  • Seto, Karen C., Anette Reenberg, Christopher G. Boone, Michail Fragkias, Dagmar Haase, Tobias Langanke, Peter Marcotullio, Darla K. Munroe, Branislav Olah, and David Simon. 2012. “Urban Land Teleconnections and Sustainability,” Proceedings of the National Academy of Sciences, 109(20): 7687-7692.
  • United Nations. 2014. World Urbanization Prospects: The 2014 Revision, Department of Economic and Social Affairs, New York, NY.
  • United Nations. 2015. World Urbanization Prospects: The 2015 Revision, Department of Economic and Social Affairs, New York, NY.

Citation: 

Crooks, A.T. (2016), Crooks on Seto and Reenberg (eds.): Rethinking Global Land Use in an Urban Era, Journal of Regional Science, 56 (4): 723-725. (pdf)

Continue reading »

Book Review: Rethinking Global Land Use in an Urban Era

https://mitpress.mit.edu/books/rethinking-global-land-use-urban-era
Recently I  reviewed a great book entitled “Rethinking Global Land Use in an Urban Era” edited  by Karen Seto and Anette Reenberg (2014) for the Journal of Regional Science. Readers can read my review below.
The beginning of the 21st Century marked a milestone in human history. For the first time, more than half of the world’s population lived in urban areas (3.9 billion). This trend is expected to continue in the foreseeable future with 6.3 billion people living in cities by 2050 (United Nations, 2014). This growth will cause more urban land to be developed during the first 30 years of the 21st century than in all of human history (Angel et al., 2011). Combine this unprecedented urban expansion with global population growth, which is expected to grow from today’s 7.3 to 11.2 billion by 2100 (United Nations, 2015), and we are faced with unprecedented challenges and questions to be asked with respect to land-use in the 21st century. For example, how much living space will be needed to accommodate this growing population or how much land will be needed to feed such a population? Or how does urban growth in one country impact agricultural production and deforestation in the other parts of the world? To answer these questions, we need to understand the complexity of land competition from social, economic, and environmental perspectives at the local, national, and international levels and the connections between them.

In their edited book, Rethinking Global Land Use in an Urban Era, Karen Seto and Anette Reenberg bring together 17 chapters from 50 experts from a variety of fields to explore global land dynamics in the 21st century. The first chapter acts as an introduction and scene-setting to the following chapters: it identifies current trends reshaping land-use locally and globally such as urbanization and the growing integration of economies and markets (e.g. telecoupling, see Seto et al., 2012), but also argues that there is a need to rethink land change science in a time when more and more people are living in cities. Specifically, they argue one should look at land-use through four lenses (which are the major sections in the book): land-use competition; distal land connections; decision making, governance, and institutions; and, finally, urbanization and land-use.

The first section of the book focuses on land-use competition, specifically what types of land-use competition exist (such as forest vs. agricultural or urban vs. agriculture), and discusses how local land-use change is increasingly being caused by global factors (chapter 2). Chapter 3 addresses food security with respect to the growing population and discusses the need for intensification of production. Chapter 4 discusses the issue of finite land resources and competition for land—such as production vs. production (e.g. food vs. fuel) or production vs. conservation (e.g. food production vs. conservation). What is interesting about this chapter is that the competition for land is not just local but also global, due to the growing number of sovereign wealth funds and multi-national corporations and the increasing degree of interconnections between places. The section concludes with chapter 5, which offers an in-depth discussion of land-use competition between food production and urban expansion in China, specifically the effects of urbanization on the loss of cultivated land for food production.

Source: Seto, K.C. and Reenberg, A. (eds.) (2014), Rethinking Global Land Use in an Urban Era, MIT Press, Cambridge, MA.
The second section of the book explores distal land connections. It opens with a chapter that reviews the globalization of economic flows and the impact of these forces on land-use transitions (i.e. land-use and land-cover change). Chapter 7 introduces applications based on the telecoupling framework to land-change science. It makes a compelling argument considering not just coupled human-environmental systems (where the focus is on local conditions) but also causes that emanate from distant locations to truly understand land-change. This theme continues in chapter 8, which outlines analytical approaches to study telecoupling, while chapter 9 uses palm oil as a case study of distal land connections. In essence, the consumers of palm oil live far from the source; thus many consumers do not immediately feel the impacts of palm oil production on land-use change.

In the third section of the book, the focus is on decision-making, governance, and institutions. Chapter 10 discusses the emergence of global land governance as a result of land grabbing by foreign investors or governments (see GRAIN, 2008), which is prompting states and global civil society to devise new global land governance instruments, while chapter 11 explores large-scale land (grabbing) transactions with a specific emphasis on the actors and their interactions. Chapter 12 focuses on private market-based regulations (such as the Forest Stewardship Council) and what they mean for land-use governance at the local and international level. The final chapter in this section focuses on changes in land-use governance in an urban era. It discusses how governance mechanisms that manage land-use are changing from territorial organizations to global industries that are tied to specific resource flows between urban and rural areas.

The final section of the book turns to urbanization and land-use. Chapter 14 reviews major contemporary urban patterns and processes related to urbanization, such as central place theory, and shows how advances in technology and infrastructure challenge such established theories. The next chapter discusses how urban land-use is unique in terms of form, size, and shape of cities and asks what will the future hold? Will cities be sprawling or compact? An interesting fact brought up in chapter 15 is that currently less than five percent of the earth’s surface is urban and with the urban population predicted to grow to 5 billion by 2030, the urban footprint will still be less than 10 percent (Seto et al., 2011). The final chapter in this section proposes a framework that moves away from looking at land as discrete categories but instead as a continuum with respect to sustainable development. The book concludes with a chapter written by the editors, which not only provides a summary of what was presented, but reemphasizes the interconnected nature of land-use and the need to study future global land change and urbanization from a multidisciplinary perspective.

Overall this is a timely, relevant, and thought-provoking collection of papers which not only explores urbanization and food production using case studies from around the world as well as the connections between cities and distant places, but also lays the foundation for new ways of thinking about land-use sustainability in the coming decades. In my opinion, this book would be a great resource for scholars interested in current state of the art of land-use science and a good textbook for any course exploring land-use and land-cover change in the 21st century.

References:

  • Angel, Shlomo, Jason Parent, Daniel L. Civco, Alexander Blei, and David Potere. 2011. “The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050,” Progress in Planning, 75(2): 53-107.
  • GRAIN. 2008.Seized: The 2008 Landgrab for Food and Financial Security,” Available at http://bit.ly/28Nc7xK [Accessed on September, 7th, 2015].
  • Seto, Karen C., Michail Fragkias, Burak Güneralp, and Michael K. Reilly. 2011. “A Meta-analysis of Global Urban Land Expansion,” PloS One, 6(8): e23777.
  • Seto, Karen C., Anette Reenberg, Christopher G. Boone, Michail Fragkias, Dagmar Haase, Tobias Langanke, Peter Marcotullio, Darla K. Munroe, Branislav Olah, and David Simon. 2012. “Urban Land Teleconnections and Sustainability,” Proceedings of the National Academy of Sciences, 109(20): 7687-7692.
  • United Nations. 2014. World Urbanization Prospects: The 2014 Revision, Department of Economic and Social Affairs, New York, NY.
  • United Nations. 2015. World Urbanization Prospects: The 2015 Revision, Department of Economic and Social Affairs, New York, NY.

Citation: 

Crooks, A.T. (2016), Crooks on Seto and Reenberg (eds.): Rethinking Global Land Use in an Urban Era, Journal of Regional Science, 56 (4): 723-725. (pdf)

Continue reading »

Sin fallas en la primera cita con el detector portátil de emociones – Clarín.com


Clarín.com

Sin fallas en la primera cita con el detector portátil de emociones
Clarín.com
Hasta la novela de Philip K. Dick y la película de Ridley Scott, este detector de emociones era sólo una máquina de ficción; hoy en día, el equipo de investigadores a cargo del proyecto, que incluye a expertos del Centre for Advanced Spatial Analysis

Continue reading »

SIMD 2016: The Scottish Index of Multiple Deprivation

Like its English counterpart IMD, SIMD is released every few years by the Scottish government, as a dataset which scores and ranks every small statistical area in Scotland according to a number of measures. These are then combined to form an overall rank and measure of deprivation for the area. This can then be mapped … Continue reading SIMD 2016: The Scottish Index of Multiple Deprivation

Continue reading »

Opportunistic Citizen Science in central California

As I’ve noted in the earlier post, I’ve travelled through central California in August, from San Francisco, to Los Angeles. Reading ‘Citizen Scientist: Searching for Heroes and Hope in an Age of Extinction‘, made me think about citizen science, but this was my holiday – and for the past 4 years, as I finish setting the email away … Continue reading Opportunistic Citizen Science in central California

Continue reading »

New Paper: Generating and Analyzing Spatial Social Networks

We recently had a paper entitled “Generating and Analyzing Spatial Social Networks” accepted in Computational and Mathematical Organization Theory. In the paper we proposed and explored spatial versions of three well known networks, that of the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert. Further details about the paper can be seen in the abstract below:

“In this paper, we propose a class of models for generating spatial versions of three classic networks: Erdös-Rényi (ER), Watts-Strogatz (WS), and Barabási-Albert (BA). We assume that nodes have geographical coordinates, are uniformly distributed over an m × m Cartesian space, and long-distance connections are penalized. Our computational results show higher clustering coefficient, assortativity, and transitivity in all three spatial networks, and imperfect power law degree distribution in the BA network. Furthermore, we analyze a special case with geographically clustered coordinates, resembling real human communities, in which points are clustered over k centers. Comparison between the uniformly and geographically clustered versions of the proposed spatial networks show an increase in values of the clustering coefficient, assortativity, and transitivity, and a lognormal degree distribution for spatially clustered ER, taller degree distribution and higher average path length for spatially clustered WS, and higher clustering coefficient and transitivity for the spatially clustered BA networks.”

Keywords: Spatial social networks, Network properties, Random network, Small-world network, Scale-free network.

The Python code for the models can be found here.

Full Reference: 

Alizadeh, M., Cioffi-Revilla, C. and Crooks, A. (2016), Generating and Analyzing Spatial Social Networks. Computational and Mathematical Organization Theory, DOI: 10.1007/s10588-016-9232-2 (pdf)



Continue reading »

New Paper: Generating and Analyzing Spatial Social Networks

We recently had a paper entitled “Generating and Analyzing Spatial Social Networks” accepted in Computational and Mathematical Organization Theory. In the paper we proposed and explored spatial versions of three well known networks, that of the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert. Further details about the paper can be seen in the abstract below:

“In this paper, we propose a class of models for generating spatial versions of three classic networks: Erdös-Rényi (ER), Watts-Strogatz (WS), and Barabási-Albert (BA). We assume that nodes have geographical coordinates, are uniformly distributed over an m × m Cartesian space, and long-distance connections are penalized. Our computational results show higher clustering coefficient, assortativity, and transitivity in all three spatial networks, and imperfect power law degree distribution in the BA network. Furthermore, we analyze a special case with geographically clustered coordinates, resembling real human communities, in which points are clustered over k centers. Comparison between the uniformly and geographically clustered versions of the proposed spatial networks show an increase in values of the clustering coefficient, assortativity, and transitivity, and a lognormal degree distribution for spatially clustered ER, taller degree distribution and higher average path length for spatially clustered WS, and higher clustering coefficient and transitivity for the spatially clustered BA networks.”

Keywords: Spatial social networks, Network properties, Random network, Small-world network, Scale-free network.

The Python code for the models can be found here.

Full Reference: 

Alizadeh, M., Cioffi-Revilla, C. and Crooks, A. (2016), Generating and Analyzing Spatial Social Networks. Computational and Mathematical Organization Theory, DOI: 10.1007/s10588-016-9232-2 (pdf)



Continue reading »
1 59 60 61 62 63 174