Modeling the outbreak, spread, and containment of tuberculosis

It seems my interest into disease models is growing. While the development of the cholera model is still underway, over the summer I have had been working with a very talented high school student looking at the outbreak, spread and containment of tuberculosis (TB). Why might you ask? TB is a global problem with 1.8 billion people having a TB Infection, 8.8 million people infected with the TB disease, and around 1.5 million annual deaths. It is the second most common form of death from an infectious disease with the majority of cases in developing countries.

So we have been developing a model that explores how TB might manifest itself, spread within an urban setting and the potential to contain the disease. We have chosen as our test case the Kibera slum within Nairobi, Kenya. Agents in this model represent the residents of the Kibera slum. They are mobile and goal-orientated, seeking to fulfill one goal before moving on to the next. Goals are determined based on the agent’s characteristics (age, sex, etc.) as well as their needs (water, food, health etc.). The exact location they choose to go to is also affected by the distance. When agents interact with one another, they can be infected with TB. Infection is determined upon the amount of bacilli absorbed by agents and their immune response. The transition from infection to disease for HIV positive patients is also dependent on the patient’s CD4 cell count.  What you see below is a poster we presented at Krasnow Institute Retreat.

To give a sense of the dynamics of the model, the movie below shows agents moving around the slum and how their health status changes as time progresses.

Continue reading »

Modeling the outbreak, spread, and containment of tuberculosis

It seems my interest into disease models is growing. While the development of the cholera model is still underway, over the summer I have had been working with a very talented high school student looking at the outbreak, spread and containment of tuberculosis (TB). Why might you ask? TB is a global problem with 1.8 billion people having a TB Infection, 8.8 million people infected with the TB disease, and around 1.5 million annual deaths. It is the second most common form of death from an infectious disease with the majority of cases in developing countries.

So we have been developing a model that explores how TB might manifest itself, spread within an urban setting and the potential to contain the disease. We have chosen as our test case the Kibera slum within Nairobi, Kenya. Agents in this model represent the residents of the Kibera slum. They are mobile and goal-orientated, seeking to fulfill one goal before moving on to the next. Goals are determined based on the agent’s characteristics (age, sex, etc.) as well as their needs (water, food, health etc.). The exact location they choose to go to is also affected by the distance. When agents interact with one another, they can be infected with TB. Infection is determined upon the amount of bacilli absorbed by agents and their immune response. The transition from infection to disease for HIV positive patients is also dependent on the patient’s CD4 cell count.  What you see below is a poster we presented at Krasnow Institute Retreat.

To give a sense of the dynamics of the model, the movie below shows agents moving around the slum and how their health status changes as time progresses.

Continue reading »

英国で「モノのインターネット」を学校教育に生かすプロジェクトが開始 – ITpro

英国で「モノのインターネット」を学校教育に生かすプロジェクトが開始
ITpro
ているのは、英ScienceScope、米Intel、米Xively(旧称Cosm)、英Explorer HQ、英Stakeholder Designの各社と、英バーミンガム大学のBirmingham Urban Climate Laboratory、英ユニバーシティー・カレッジ・ロンドン(UCL)のCentre for Advanced Spatial Analysis、英 

Continue reading »

英国で「モノのインターネット」を学校教育に生かすプロジェクトが開始 – ITpro

英国で「モノのインターネット」を学校教育に生かすプロジェクトが開始
ITpro
ているのは、英ScienceScope、米Intel、米Xively(旧称Cosm)、英Explorer HQ、英Stakeholder Designの各社と、英バーミンガム大学のBirmingham Urban Climate Laboratory、英ユニバーシティー・カレッジ・ロンドン(UCL)のCentre for Advanced Spatial Analysis、英 

Continue reading »

Intel-led group announces UK Internet of School Things project – ITProPortal


ITProPortal

Intel-led group announces UK Internet of School Things project
ITProPortal
The full list of groups that make up the Distance consortium is: ScienceScope, Intel, Xively (formerly Cosm), Explorer HQ, Stakeholder Design, University of Birmingham’s Urban Climate Laboratory, UCL Centre for Advanced Spatial Analysis, and The Open 

and more »

Continue reading »

DISTANCE Launches the Internet of School Things – An International … – DirectionsMag.com

DISTANCE Launches the Internet of School Things – An International
DirectionsMag.com
The consortium is made up of ScienceScope, Intel, Xively (formerly Cosm), Explorer HQ, Stakeholder Design,University of Birmingham’s Urban Climate Laboratory, UCL Centre for Advanced Spatial Analysis, and The Open University Department of 

Continue reading »

Bridging the Qual/Quant Divide

I’ve been in my new post in the Geography department at King’s College London for nearly nine months now and — together with another new-ish colleague – have been asked to design a programme to teach quantitative research methods to students who often seem … Continue reading 

Continue reading »

Bridging the Qual/Quant Divide

I’ve been in my new post in the Geography department at King’s College London for nearly nine months now and — together with another new-ish colleague – have been asked to design a programme to teach quantitative research methods to students who often seem … Continue reading 

Continue reading »
1 2 3