Sin fallas en la primera cita con el detector portátil de emociones – Clarín.com


Clarín.com

Sin fallas en la primera cita con el detector portátil de emociones
Clarín.com
Hasta la novela de Philip K. Dick y la película de Ridley Scott, este detector de emociones era sólo una máquina de ficción; hoy en día, el equipo de investigadores a cargo del proyecto, que incluye a expertos del Centre for Advanced Spatial Analysis

Continue reading »

SIMD 2016: The Scottish Index of Multiple Deprivation

Like its English counterpart IMD, SIMD is released every few years by the Scottish government, as a dataset which scores and ranks every small statistical area in Scotland according to a number of measures. These are then combined to form an overall rank and measure of deprivation for the area. This can then be mapped … Continue reading SIMD 2016: The Scottish Index of Multiple Deprivation

Continue reading »

Opportunistic Citizen Science in central California

As I’ve noted in the earlier post, I’ve travelled through central California in August, from San Francisco, to Los Angeles. Reading ‘Citizen Scientist: Searching for Heroes and Hope in an Age of Extinction‘, made me think about citizen science, but this was my holiday – and for the past 4 years, as I finish setting the email away … Continue reading Opportunistic Citizen Science in central California

Continue reading »

New Paper: Generating and Analyzing Spatial Social Networks

We recently had a paper entitled “Generating and Analyzing Spatial Social Networks” accepted in Computational and Mathematical Organization Theory. In the paper we proposed and explored spatial versions of three well known networks, that of the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert. Further details about the paper can be seen in the abstract below:

“In this paper, we propose a class of models for generating spatial versions of three classic networks: Erdös-Rényi (ER), Watts-Strogatz (WS), and Barabási-Albert (BA). We assume that nodes have geographical coordinates, are uniformly distributed over an m × m Cartesian space, and long-distance connections are penalized. Our computational results show higher clustering coefficient, assortativity, and transitivity in all three spatial networks, and imperfect power law degree distribution in the BA network. Furthermore, we analyze a special case with geographically clustered coordinates, resembling real human communities, in which points are clustered over k centers. Comparison between the uniformly and geographically clustered versions of the proposed spatial networks show an increase in values of the clustering coefficient, assortativity, and transitivity, and a lognormal degree distribution for spatially clustered ER, taller degree distribution and higher average path length for spatially clustered WS, and higher clustering coefficient and transitivity for the spatially clustered BA networks.”

Keywords: Spatial social networks, Network properties, Random network, Small-world network, Scale-free network.

The Python code for the models can be found here.

Full Reference: 

Alizadeh, M., Cioffi-Revilla, C. and Crooks, A. (2016), Generating and Analyzing Spatial Social Networks. Computational and Mathematical Organization Theory, DOI: 10.1007/s10588-016-9232-2 (pdf)



Continue reading »

New Paper: Generating and Analyzing Spatial Social Networks

We recently had a paper entitled “Generating and Analyzing Spatial Social Networks” accepted in Computational and Mathematical Organization Theory. In the paper we proposed and explored spatial versions of three well known networks, that of the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert. Further details about the paper can be seen in the abstract below:

“In this paper, we propose a class of models for generating spatial versions of three classic networks: Erdös-Rényi (ER), Watts-Strogatz (WS), and Barabási-Albert (BA). We assume that nodes have geographical coordinates, are uniformly distributed over an m × m Cartesian space, and long-distance connections are penalized. Our computational results show higher clustering coefficient, assortativity, and transitivity in all three spatial networks, and imperfect power law degree distribution in the BA network. Furthermore, we analyze a special case with geographically clustered coordinates, resembling real human communities, in which points are clustered over k centers. Comparison between the uniformly and geographically clustered versions of the proposed spatial networks show an increase in values of the clustering coefficient, assortativity, and transitivity, and a lognormal degree distribution for spatially clustered ER, taller degree distribution and higher average path length for spatially clustered WS, and higher clustering coefficient and transitivity for the spatially clustered BA networks.”

Keywords: Spatial social networks, Network properties, Random network, Small-world network, Scale-free network.

The Python code for the models can be found here.

Full Reference: 

Alizadeh, M., Cioffi-Revilla, C. and Crooks, A. (2016), Generating and Analyzing Spatial Social Networks. Computational and Mathematical Organization Theory, DOI: 10.1007/s10588-016-9232-2 (pdf)



Continue reading »

Open Source Public Transport Accessibility Modelling

The RGS-IBG annual conference has been on this week, and I presented as part of a series of geocomputation sessions arranged in advance of the 21st anniversary Geocomputation conference in Leeds next year. The topic was current CASA research from the RESOLUTION project, looking at developing fast and consistent methods of measuring public transport accessibility between different … Continue reading Open Source Public Transport Accessibility Modelling

Continue reading »
1 2