New Paper: User-Generated Big Data and Urban Morphology

Continuing our work with crowdsourcing and geosocial analysis we recently had a paper published in a special issue of the  Built Environment journal entitled “User-Generated Big Data and Urban Morphology.”
The theme of the special issue is: “Big Data and the City” which was guest edited by Mike Batty and includes 12 papers.  To quote from the website

“This cutting edge special issue responds to the latest digital revolution, setting out the state of the art of the new technologies around so-called Big Data, critically examining the hyperbole surrounding smartness and other claims, and relating it to age-old urban challenges. Big data is everywhere, largely generated by automated systems operating in real time that potentially tell us how cities are performing and changing. A product of the smart city, it is providing us with novel data sets that suggest ways in which we might plan better, and design more sustainable environments. The articles in this issue tell us how scientists and planners are using big data to better understand everything from new forms of mobility in transport systems to new uses of social media. Together, they reveal how visualization is fast becoming an integral part of developing a thorough understanding of our cities.”

Table of Contents

In our paper we discuss and show how crowdsourced data is leading to the emergence of alternate views of urban morphology that better capture the intricate nature of urban environments and their dynamics. Specifically how such data can provide us information pertaining to linked spaces and geosocial neighborhoods. We argue that a geosocial neighborhood is not defined by its administrative boundaries, planning zones, or physical barriers, but rather by its emergence as an organic self-organized social construct that is embedded in geographical spaces that are linked by human activity. Below is the abstract of the paper and some of the figures we have in it which showcase our work.

“Traditionally urban morphology has been the study of cities as human habitats through the analysis of their tangible, physical artefacts. Such artefacts are outcomes of complex social and economic forces, and their study is primarily driven by traditional modes of data collection (e.g. based on censuses, physical surveys, and mapping). The emergence of Web 2.0 and through its applications, platforms and mechanisms that foster user-generated contributions to be made, disseminated, and debated in cyberspace, is providing a new lens in the study of urban morphology. In this paper, we showcase ways in which user-generated ‘big data’ can be harvested and analyzed to generate snapshots and impressionistic views of the urban landscape in physical terms. We discuss and support through representative examples the potential of such analysis in revealing how urban spaces are perceived by the general public, establishing links between tangible artefacts and cyber-social elements. These links may be in the form of references to, observations about, or events that enrich and move beyond the traditional physical characteristics of various locations. This leads to the emergence of alternate views of urban morphology that better capture the intricate nature of urban environments and their dynamics.”

Keywords: Urban Morphology, Social Media, GeoSocial, Cities, Big Data.

City Infoscapes – Fusing Data from Physical (L1, L2), Social, Perceptual (L3) Spaces to Derive Place Abstractions (L4) for Different Locations (N1, N2).
Recreational Hotspots Composed of “Locals” and “Tourists” with Perceived Artifacts Indicating “Use” and “Need”. (A) High Line Park (B) Madison Square Garden.



Moving from Spatial Neighborhoods to Geosocial Neighborhoods via Links.

The Emergence of Geosocial Neighborhoods after the in the
Aftermath of the 2013 Boston Marathon Bombing

Full  Reference: 

Crooks, A.T., Croitoru, A., Jenkins, A., Mahabir, R., Agouris, P. and Stefanidis A. (2016). “User-Generated Big Data and Urban Morphology,”  Built Environment, 42 (3): 396-414. (pdf)

Continue reading »

New Paper: User-Generated Big Data and Urban Morphology

Continuing our work with crowdsourcing and geosocial analysis we recently had a paper published in a special issue of the  Built Environment journal entitled “User-Generated Big Data and Urban Morphology.”
The theme of the special issue is: “Big Data and the City” which was guest edited by Mike Batty and includes 12 papers.  To quote from the website

“This cutting edge special issue responds to the latest digital revolution, setting out the state of the art of the new technologies around so-called Big Data, critically examining the hyperbole surrounding smartness and other claims, and relating it to age-old urban challenges. Big data is everywhere, largely generated by automated systems operating in real time that potentially tell us how cities are performing and changing. A product of the smart city, it is providing us with novel data sets that suggest ways in which we might plan better, and design more sustainable environments. The articles in this issue tell us how scientists and planners are using big data to better understand everything from new forms of mobility in transport systems to new uses of social media. Together, they reveal how visualization is fast becoming an integral part of developing a thorough understanding of our cities.”

Table of Contents

In our paper we discuss and show how crowdsourced data is leading to the emergence of alternate views of urban morphology that better capture the intricate nature of urban environments and their dynamics. Specifically how such data can provide us information pertaining to linked spaces and geosocial neighborhoods. We argue that a geosocial neighborhood is not defined by its administrative boundaries, planning zones, or physical barriers, but rather by its emergence as an organic self-organized social construct that is embedded in geographical spaces that are linked by human activity. Below is the abstract of the paper and some of the figures we have in it which showcase our work.

“Traditionally urban morphology has been the study of cities as human habitats through the analysis of their tangible, physical artefacts. Such artefacts are outcomes of complex social and economic forces, and their study is primarily driven by traditional modes of data collection (e.g. based on censuses, physical surveys, and mapping). The emergence of Web 2.0 and through its applications, platforms and mechanisms that foster user-generated contributions to be made, disseminated, and debated in cyberspace, is providing a new lens in the study of urban morphology. In this paper, we showcase ways in which user-generated ‘big data’ can be harvested and analyzed to generate snapshots and impressionistic views of the urban landscape in physical terms. We discuss and support through representative examples the potential of such analysis in revealing how urban spaces are perceived by the general public, establishing links between tangible artefacts and cyber-social elements. These links may be in the form of references to, observations about, or events that enrich and move beyond the traditional physical characteristics of various locations. This leads to the emergence of alternate views of urban morphology that better capture the intricate nature of urban environments and their dynamics.”

Keywords: Urban Morphology, Social Media, GeoSocial, Cities, Big Data.

City Infoscapes – Fusing Data from Physical (L1, L2), Social, Perceptual (L3) Spaces to Derive Place Abstractions (L4) for Different Locations (N1, N2).
Recreational Hotspots Composed of “Locals” and “Tourists” with Perceived Artifacts Indicating “Use” and “Need”. (A) High Line Park (B) Madison Square Garden.



Moving from Spatial Neighborhoods to Geosocial Neighborhoods via Links.

The Emergence of Geosocial Neighborhoods after the in the
Aftermath of the 2013 Boston Marathon Bombing

Full  Reference: 

Crooks, A.T., Croitoru, A., Jenkins, A., Mahabir, R., Agouris, P. and Stefanidis A. (2016). “User-Generated Big Data and Urban Morphology,”  Built Environment, 42 (3): 396-414. (pdf)

Continue reading »

A Semester with Urban Analytics

This past semester I gave a new class at GMU entitled “Urban Analytics”. In a nutshell the class was about introducing students to a broad interdisciplinary field that focuses on the use of data to study cities. More specifcally the emphasis of the cla…

Continue reading »

A Semester with Urban Analytics

This past semester I gave a new class at GMU entitled “Urban Analytics”. In a nutshell the class was about introducing students to a broad interdisciplinary field that focuses on the use of data to study cities. More specifcally the emphasis of the cla…

Continue reading »

Crowdsourcing Urban Form and Function

We have just had published a new paper entitled: “Crowdsourcing Urban Form and Function” in International Journal of Geographical Information Science which showcases some of our recent work with respect to cities and how new sources of information can be used to study urban morphology at a variety of spatial and temporal scales. Below is the abstract for the paper: 

“Urban form and function have been studied extensively in urban planning and geographic information science. However, gaining a greater understanding of how they merge to define the urban morphology remains a substantial scientific challenge. Towards this goal, this paper addresses the opportunities presented by the emergence of crowdsourced data to gain novel insights into form and function in urban spaces. We are focusing in particular on information harvested from social media and other open-source and volunteered datasets (e.g. trajectory and OpenStreetMap data). These data provide a first-hand account of form and function from the people who define urban space through their activities. This novel bottom-up approach to study these concepts complements traditional urban studies work to provide a new lens for studying urban activity. By synthesizing recent advancements in the analysis of open-source data we provide a new typology for characterizing the role of crowdsourcing in the study of urban morphology. We illustrate this new perspective by showing how social media, trajectory, and traffic data can be analyzed to capture the evolving nature of a city’s form and function. While these crowd contributions may be explicit or implicit in nature, they are giving rise to an emerging research agenda for monitoring, analyzing and modeling form and function for urban design and analysis.”

This paper builds and extends considerably our prior work, with respect to crowdsourcing, volunteered and ambient geographic information. In the scope of this paper we use the term ‘urban form’ to refer to the aggregate of the physical shape of the city, its buildings, streets, and all other elements that make up the urban space. In essence, the geometry of the city. In contrast, we use the term ‘urban function’ to refer to the activities that are taking place within this space. To this end we contrast how crowdsourced data can related to more traditional sources of such information both explicitly and implicitly as shown in the table below. 

A typology of implicit and explicit form and function content

In addition, we also discuss in the paper how these new sources of data, which are often at finer resolutions than more authoritative data are allowing us to to customize the we we aggregate the data  at various geographical levels as shown below. Such aggregations can range from building footprints and addresses to street blocks (e.g. for density analysis), or street networks (e.g. for accessibility analysis). For large-scale urban analysis we can revert to the use of zonal geographies or grid systems.  
Aggregation methods for varied scales of built environment analysis

In the application section of the paper we highlight how we can extract implicit form and function from crowdsourced data. The image below for example, shows how we can take information from Twitter, and differentiate different neighborhoods over space and time.

Neighborhood map and topic modeling results showing the mixture of social functions in each area.
Finally in the paper, we outline an emerging research agenda related to the “persistent urban morphology concept” as shown below. Specifically how crowdsourcing is changing how we collect, analyze and model urban morphology. Moreover, how this new paradigm provides a new lens for studying the conceptualization of how cities operate, at much finer temporal, spatial, and social scales than we had been able to study so far.

The persistent urban morphology concept.

We hope you enjoy the paper.

Full Reference:  

Crooks, A.T., Pfoser, D., Jenkins, A., Croitoru, A., Stefanidis, A., Smith, D. A., Karagiorgou, S., Efentakis, A. and Lamprianidis, G. (2015), Crowdsourcing Urban Form and Function, International Journal of Geographical Information Science. DOI: 10.1080/13658816.2014.977905 (pdf)

 

Continue reading »

Crowdsourcing Urban Form and Function

We have just had published a new paper entitled: “Crowdsourcing Urban Form and Function” in International Journal of Geographical Information Science which showcases some of our recent work with respect to cities and how new sources of information can be used to study urban morphology at a variety of spatial and temporal scales. Below is the abstract for the paper: 

“Urban form and function have been studied extensively in urban planning and geographic information science. However, gaining a greater understanding of how they merge to define the urban morphology remains a substantial scientific challenge. Towards this goal, this paper addresses the opportunities presented by the emergence of crowdsourced data to gain novel insights into form and function in urban spaces. We are focusing in particular on information harvested from social media and other open-source and volunteered datasets (e.g. trajectory and OpenStreetMap data). These data provide a first-hand account of form and function from the people who define urban space through their activities. This novel bottom-up approach to study these concepts complements traditional urban studies work to provide a new lens for studying urban activity. By synthesizing recent advancements in the analysis of open-source data we provide a new typology for characterizing the role of crowdsourcing in the study of urban morphology. We illustrate this new perspective by showing how social media, trajectory, and traffic data can be analyzed to capture the evolving nature of a city’s form and function. While these crowd contributions may be explicit or implicit in nature, they are giving rise to an emerging research agenda for monitoring, analyzing and modeling form and function for urban design and analysis.”

This paper builds and extends considerably our prior work, with respect to crowdsourcing, volunteered and ambient geographic information. In the scope of this paper we use the term ‘urban form’ to refer to the aggregate of the physical shape of the city, its buildings, streets, and all other elements that make up the urban space. In essence, the geometry of the city. In contrast, we use the term ‘urban function’ to refer to the activities that are taking place within this space. To this end we contrast how crowdsourced data can related to more traditional sources of such information both explicitly and implicitly as shown in the table below. 

A typology of implicit and explicit form and function content

In addition, we also discuss in the paper how these new sources of data, which are often at finer resolutions than more authoritative data are allowing us to to customize the we we aggregate the data  at various geographical levels as shown below. Such aggregations can range from building footprints and addresses to street blocks (e.g. for density analysis), or street networks (e.g. for accessibility analysis). For large-scale urban analysis we can revert to the use of zonal geographies or grid systems.  
Aggregation methods for varied scales of built environment analysis

In the application section of the paper we highlight how we can extract implicit form and function from crowdsourced data. The image below for example, shows how we can take information from Twitter, and differentiate different neighborhoods over space and time.

Neighborhood map and topic modeling results showing the mixture of social functions in each area.
Finally in the paper, we outline an emerging research agenda related to the “persistent urban morphology concept” as shown below. Specifically how crowdsourcing is changing how we collect, analyze and model urban morphology. Moreover, how this new paradigm provides a new lens for studying the conceptualization of how cities operate, at much finer temporal, spatial, and social scales than we had been able to study so far.

The persistent urban morphology concept.

We hope you enjoy the paper.

Full Reference:  

Crooks, A.T., Pfoser, D., Jenkins, A., Croitoru, A., Stefanidis, A., Smith, D. A., Karagiorgou, S., Efentakis, A. and Lamprianidis, G. (2015), Crowdsourcing Urban Form and Function, International Journal of Geographical Information Science. DOI: 10.1080/13658816.2014.977905 (pdf)

 

Continue reading »